《函数与方程、不等式之间的关系》函数PPT课件(第2课时)
第一部分内容:学 习 目 标
1.掌握函数零点的存在性定理,并会判断函数零点的个数. (重点)
2.了解二分法是求方程近似解的常用方法,掌握二分法是求函数零点近似解的步骤.(难点)
3.理解函数与方程之间的联系,并能用函数与方程思想分析问题、解决问题.(重点、难点)
核 心 素 养
1.通过存在性定理的学习,培养逻辑推理的素养.
2.通过二分法的学习,提升数据分析,数学建模的学科素养.
3.理解函数与方程之间的联系,提升数学抽象的学科素养.
... ... ...
函数与方程不等式之间的关系PPT,第二部分内容:自主预习探新知
1.函数零点的存在性定理
如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且 f(a)f(b)<0 (即在区间两个端点处的函数值异号),则函数y=f(x)在区间[a,b]中至少有一个零点,即∃x0∈[a,b],f(x0)=0.
2.二分法的定义
(1)二分法的条件:函数y=f(x)在区间[a,b]上连续不断且 f(a)f(b)<0.
(2)二分法的过程:通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法,称为二分法.由函数的零点与相应方程根的关系,也可以用二分法求方程的近似解.
3.用二分法求函数零点近似值的步骤
给定精确度ε,用二分法求函数f(x)在[a,b]上的零点近似值的步骤是:
第一步 检查|b-a|<2ε是否成立,如果成立,取x1=a+b2,计算结束;如果不成立,转到第二步.
第二步 计算区间[a,b]的中点a+b2对应的函数值,若fa+b2=0,取x1=a+b2,计算结束;若fa+b2≠0,转到第三步.
第三步 若f(a)fa+b2<0,将a+b2的值赋给b用a+b2→b表示,下同,回到第一步;若fa+b2f(b)<0,将a+b2的值赋给a,回到第一步.
初试身手
1.下列函数不宜用二分法求零点的是( )
A.f(x)=x3-1 B.f(x)=ln x+3
C.f(x)=x2+22x+2 D.f(x)=-x2+4x-1
2.若函数f(x)在区间[a,b]上为单调函数,且图像是连续不断的曲线,则下列说法中正确的是( )
A.函数f(x)在区间[a,b]上不可能有零点
B.函数f(x)在区间[a,b]上一定有零点
C.若函数f(x)在区间[a,b]上有零点,则必有f(a)•f(b)<0
D.若函数f(x)在区间[a,b]上没有零点,则必有f(a)•f(b)>0
3.用“二分法”可求近似解,对于精确度ε说法正确的是( )
A.ε越大,零点的精确度越高
B.ε越大,零点的精确度越低
C.重复计算次数就是ε
D.重复计算次数与ε无关
4.若函数f(x)的图像是连续不断的,且f(0)>0,f(1)•f(2)•f(4)<0,则下列命题正确的是________.
①函数f(x)在区间(0,1)内有零点;
②函数f(x)在区间(1,2)内有零点;
③函数f(x)在区间(0,2)内有零点;
④函数f(x)在区间(0,4)内有零点.
... ... ...
函数与方程不等式之间的关系PPT,第三部分内容:合作探究提素养
判断函数零点所在的区间
【例1】求证:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.
[证明] 设f(x)=x4-4x-2,其图像是连续曲线.
因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0,
所以方程在(-1,0),(0,2)内都有实数解.
从而证明该方程在给定的区间内至少有两个实数解.
规律方法
一般而言,判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断.
跟踪训练
1.若函数y=f(x)在区间[a,b]上的图像为连续不断的一条曲线,则下列说法正确的是( )
A.若f(a)f(b)>0,则不存在实数c∈(a,b)使得f(c)=0
B.若f(a)f(b)<0,则存在且只存在一个实数c∈(a,b)使得f(c)=0
C.若f(a)f(b)>0,则有可能存在实数c∈(a,b)使得f(c)=0
D.若f(a)f(b)<0,则有可能不存在实数c∈(a,b)使得f(c)=0
对二分法概念的理解
【例2】下列图像与x轴均有交点,其中不能用二分法求函数零点的是( )
B [利用二分法求函数的零点必须满足零点两侧函数值异号,在选项B中,不满足零点两侧函数值异号,不能用二分法求零点.由于A、C、D中零点的两侧函数值异号,故可采用二分法求零点.]
规律方法
二分法是求一般函数的零点的一种通法,使用二分法的前提条件是:函数零点的存在性.对“函数在区间[a,b]上连续”的理解如下:不管函数在整个定义域内是否连续,只要找得到包含零点的区间上函数图像是连续的即可.
用二分法求函数零点
【例3】求函数f(x)=x2-5的负零点.(精确度为0.1)
[解] 由于f(-2)=-1<0,f(-3)=4>0,故取区间(-3,-2)作为计算的初始区间,用二分法逐次计算,列表如下:
规律方法
利用二分法求函数零点应关注三点
1要选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.
2用列表法往往能比较清晰地表达函数零点所在的区间.
3根据给定的精确度,及时检验所得区间长度是否达到要求,以决定是停止计算还是继续计算.
课堂小结
1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.
2.并非所有函数都可以用二分法求其零点,只有满足:
(1)在区间[a,b]上连续不断;
(2)f(a)•f(b)<0,
上述两条的函数方可采用二分法求得零点的近似值.
... ... ...
函数与方程不等式之间的关系PPT,第四部分内容:当堂达标固双基
1.函数y=-x2+8x-16在区间[3,5]上( )
A.没有零点 B.有一个零点
C.有两个零点 D.有无数个零点
2.用二分法求函数f(x)=x3+x2-2x-2的一个正零点的近似值(精确到0.1)时,依次计算得到如下数据:f(1)=-2,f(1.5)=0.625,f(1.25)≈-0.984,f(1.375)≈-0.260,关于下一步的说法正确的是( )
A.已经达到精确度的要求,可以取1.4作为近似值
B.已经达到精确度的要求,可以取1.375作为近似
C.没有达到精确度的要求,应该接着计算f(1.437 5)
D.没有达到精确度的要求,应该接着计算f(1.312 5)
3.函数图像与x轴均有交点,但不宜用二分法求交点横坐标的是( )
4.用二分法求函数零点,函数的零点总位于区间[an,bn]上,
当|an-bn|<ε时,函数的近似零点an+bn2与真正零点的误差不超过
A.ε B.12ε
C.2ε D.14ε
... ... ...
关键词:高中人教B版数学必修一PPT课件免费下载,函数与方程不等式之间的关系PPT下载,函数PPT下载,零点的存在性及其近似值的求法PPT下载,.PPT格式;
更多关于《 函数 函数与方程不等式之间的关系 零点的存在性及其近似值的求法 》PPT课件, 请点击 函数PPT函数与方程不等式之间的关系PPT零点的存在性及其近似值的求法PPT标签。
《函数与方程、不等式之间的关系》函数PPT课件(第1课时):
《函数与方程、不等式之间的关系》函数PPT课件(第1课时) 第一部分内容:学 习 目 标 1.理解函数零点的概念以及函数的零点与方程的根之间的关系.(难点) 2.会求函数的零点.(重点) 3..
《函数与方程、不等式之间的关系》函数PPT(第2课时零点的存在性及其近似值的求法):
《函数与方程、不等式之间的关系》函数PPT(第2课时零点的存在性及其近似值的求法) 第一部分内容:学习目标 会用函数零点存在定理判断函数在某一区间上零点的存在性及零点个数,会根据..
《函数与方程、不等式之间的关系》函数PPT(第1课时):
《函数与方程、不等式之间的关系》函数PPT(第1课时) 第一部分内容:学习目标 理解函数零点的概念以及函数零点与方程的关系 结合二次函数的图像,会判断一元二次方程根的存在性及一元..